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The fundamental idea

Key ingredients:

Independent contacts to each layer

High degree of nesting of Fermi surfaces

Low SP tunneling rate between layers

Picture credit: Kharitonov et al., Phys. Rev. B 78

Phase coherence between the two layers

Transport of excitons can be measured:

Picture credit: Su et al., Nat. Phys. 4.

Apply current in lower layer, measure voltage drop in upper layer (drag measurement).
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A long-standing prediction

Prediction was formation of
‘superconductivity’ with gap of the order of
room temperature.
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The impact of disorder in 2D

with Enrico Rossi, Rajdeep Sensarma, and Martin Rodriguez-Vega, and Sankar Das Sarma.
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Double layer graphene – Excitonic superfluidity

The condensate has yet to be observed despite several experimental attempts.

Question is: Why?

Possibility 1: Excitonic gap is too small.

The form of the inter-layer screening used in the calculation of the gap is crucial:

Sodemann et al., Phys. Rev. B 85, 195136 (2012).

For SiO2 or BN substrates, α = e2

κ~vF
≈ 0.5.

For vacuum (suspended graphene), α = 2.2.

Unscreened interaction ⇒ room
temperature condensate!!!

Static screening ⇒ vanishing gap.

Dynamic screening ⇒ ???

Possibility 2: Disorder
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Disorder in graphene systems

STM can reveal atomic-scale structure of crystal.

Also resolve the Dirac point,

Which can be used to extract the local charge
density.

Rutter et al., Nat. Phys. 7, 649 (2009).

Monolayer:

Deshpande et al., Phys. Rev. B 79, 205411 (2009).

Scale bar is 8nm.

Bilayer:

Rutter et al., Nat. Phys. 7, 649 (2011).

Scale bar is 20nm.
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Causes of inhomogeneity

Scalar potential acts as a local shift in the
chemical potential:

Charged impurities:

Zhang et al., Nat. Phys. 5, 722 (2009).

Ripples, corrugations, and strain:

Gibertini et al. Phys. Rev. B 85, 201405(R) (2012).
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Possibility 2 – Disorder

Main question: Does charge inhomogeneity affect the formation of the condensate?
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Lower layer
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This is similar to magnetic disorder in
superconductivity.
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Our calculation

There are three stages to the calculation:

1 Theory for homogeneous unbalanced system.
I Temporarily ignore inhomogeneity, calculate effect of imperfectly nested

Fermi surfaces.

2 Analysis of realistic inhomogeneity.
I Calculate statistics for δµ(r) in situations corresponding to contemporary

experiments.

3 Combine these two results to assess impact of inhomogeneity on
condensate formation.
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Step 1: Tc in clean system – unscreened interaction

Unscreened interaction:

V (q) =
2πe2

εq

∆(δµ) unchanged for
δµ < 2∆(0).

Equivalent to
Clogston–Chandrasekhar limit.

No evidence of FFLO state.
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Step 2: Analysis of inhomogeneity

Broken translational symmetry makes it impossible to analytically calculate
exact density distribution for random disorder.

We employ a numerical method: Thomas-Fermi theory.

Functional method (à la DFT).

The kinetic energy operator is also replaced by a functional of the density.

This restricts the applicability to the regime where |∇n/n| < kF , which is
satisfied for double layer graphene.
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Step 2: Analysis of inhomogeneity

Energy functional is

E[nu, nl] = Eu[nu(r)] + El[nl(r)] +
e2

2κ

∫∫
d2rd2r′

nu(r)nl(r
′)√

|r− r′|2 + d2

Layer energy functional includes contributions from disorder potential, and
electron–electron interactions:

E[n] = EK [n(r)] +
e2

2κ

∫
dr′

∫
dr
n(r)n(r′)

|r− r′|

+
e2

κ

∫
drVD(r)n(r)− µ

∫
drn(r).

Ground state density landscape is found by numerically minimizing the
energy functional with respect to the density distribution.

Density distribution gives local chemical potential for each layer, and hence
the local δµ.
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Step 2: Analysis of inhomogeneity

Using TFT, we calculate the spatial profile of δµ for a given manifestation of
charged impurity disorder:

SiO2

hBN

dB = 20nm

SiO2

dB = 1nm

c.f. Austin

c.f. Manchester
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Step 3: Links back to BCS theory

We can perform this calculation for many (≈ 600) disorder realizations and collect
statistics for the distribution of δµ.

This distribution characterized by it’s root-mean-square (rms) value.
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Predictions for ∆ from BCS theory:

Unscreened: ∆ ∼ 30meV,

Static screening: ∆ ∼ 0.01meV,

Dynamic screening: ∆ ∼ 1meV.

D.S.L. Abergel 3/10/15 16 / 24



Summary

Excitonic superfluidity is severely impacted by charge inhomogeneity in the
two layers.

The very cleanest contemporary samples may be on the cusp of allowing
the condensate.

I If estimates of the gap size using dynamical screening are to be believed.
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Generalization to 1D
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Excitons in core-shell nanowires

B. Ganjipour et al., Appl. Phys. Lett. 101, 103501 (2012).

Case 2 allows for pairing.

Ground state populations.

Alternate geometries also possible.

d

d
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Assumptions and disclaimers

No true long-range order in 1D.

Particle correlations have power law decay ⇒ quasi-order.

In low density regime (kF d < 1), system is effectively fermionic.

Transport experiments on core-shell wires show no Luttinger liquid behavior.
B. Ganjipour et al., Appl. Phys. Lett. 101, 103501 (2012).

Bosonization treatment by Werman and Berg:

Y. Werman and E. Berg, arXiv:1408.2718 (2014).
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Theoretical details

Mean-field BCS theory in the particle-hole channel:

H =
∑
k

[
ξ1ka

†
kak + ξ2kb−kb

†
−k + ∆ka

†
kb
†
−k + h.c.

]
.

The gap function is:

∆k =

∫
dk′

Ve−h(k′ − k)

4π

∆k′ [nα(k′) + nβ(k′)− 1]√
(ξ1k − ξ2k)2 + 4∆2

k′
.

Quasi-particle bands are:

E±k =
ξ1k + ξ2k

2
± 1

2

√
(ξ1k − ξ2k)2 + 4∆2

k.

Solve self-consistently for the gap function.

Distance of closest approach of the two bands
characterises ‘condensate’, label as ∆max.

∆max

µ

µ
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Excitons – results

Case 2 allows for pairing.

Optimal pairing when µ at
band crossing (µc).

m∗
1 > 0

m∗
2 < 0

µ = µc

Eext

µcrit = µc±2∆max

√
|m∗1||m∗2|
|m∗1 −m∗2|
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Summary

Spatially separated excitonic systems are an exciting avenue for device design.

Double layer graphene systems may be on the cusp of realizing the condensate.
Phys. Rev. B 86, 155447(R) (2012),
Phys. Rev. B 88, 235402 (2013).

Collaboration with E. Rossi, S. Das Sarma, M. Rodriguez-Vega, and R. Sensarma.

Parallel 1D systems may also be attractive hosts for exciton formation.
arXiv:1408.7065.
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Other interests

‘Lateral heterostructures’ of 2D materials.

Optical properties of 2D materials.

Tunneling conductance in strongly
correlated systems.
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